where x, y, and t are integers, x and y have opposite parity, x > y, and a and b are the legs of the triangle. Using this representation of the triangle sides, and letting P be the perimeter of the triangle and A the area, we have $P = a + b + c = 2xyt + (x^2 - y^2)t + (x^2 + y^2)t = 2xt(x + y)$ and $A = \frac{1}{2}ab = \frac{1}{2}(2xyt)(x^2 - y^2)t = xyt^2(x^2 - y^2)$. Now the problem stipulates that the area is λ times the perimeter, which implies that

$$xyt^2(x^2-y^2) = \lambda(2xt(x+y)).$$

This equation can be solved for λ to yield $\lambda = \frac{1}{2}y(x-y)t$. Such λ will be an integer unless both t and y are odd. Therefore, all solutions are given by

$$(a,b,c) \; = \; \left(2xyt, \, (x^2-y^2)t, \, rac{y(x-y)t}{2}
ight)$$
 ,

where x and y have opposite parity, x>y, and at least one of y and t is even.

One incomplete solution was received.

M150. Proposed by Arkady Alt, San Jose, CA, USA.

Let two complex numbers z_1 and z_2 satisfy the conditions

$$z_1 + z_2 = -(i+1),$$

 $z_1 \cdot z_2 = -i.$

Without calculating z_1 and z_2 , find $z_1 \cdot \overline{z_2}$.

Solution by the proposer.

Note that $z_1\cdot\overline{z_2}=rac{z_1}{z_2}\cdot|z_2|^2$. From $(z_1+z_2)^2=2i=-2z_1\cdot z_2$, we immediately obtain $z_1^2+4z_1z_2+z_2^2=0$, or equivalently,

$$\left(\frac{z_1}{z_2}\right)^2 + 4\left(\frac{z_1}{z_2}\right) + 1 = 0.$$

Thus, $\frac{z_1}{z_2}$ is real and negative. Therefore, $z_1\cdot\overline{z_2}$ is also real and negative. Combining this with $|z_1\cdot\overline{z_2}|=|z_1\cdot z_2|=1$, we see that $z_1\cdot\overline{z_2}=-1$.